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 Abstract –– The dual-tree complex wavelet transform (DT-CWT) which utilizes two 2- band discrete wavelet transform 
(DWT) was recently extended to M- band. In this paper we provide a simple construction method for an M-band DT-
CWT, with M = rd where r, d Z. In particular, we show how to extend a given r- band DT-CWT to an rd – band one. For 
convenience, the case where r = 2, d = 2 is considered. However, the scheme can be extended to general {r, d} pairs 
straightforwardly .There are so many methods to denoise complex noisy signals, but this paper proposes an improved 
threshold method (soft thresholding with improved thresholding rule) used with M-band DTCWT to Denise the complex 
signals. Finally, the results obtained using the proposed algorithm is compared with the 2-band DTCWT algorithm. 

 
 Index Terms –– Wavelets, complex wavelets, 2- band dual- tree, M-band dual tree, Hilbert transform pairs, thresholding, 
Improved thresholding method. 
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I. INTRODUCTION 

 
          The discrete dual-tree complex wavelet 
transform (DT-CWT) [1] provide approximate shift- 
invariance and directionality. The DT-CWT achieves 
these properties by employing two discrete wavelet 
associated with second DWT is the Hilbert transform 
of the first. This scheme was extended to M-band 
orthonormal wavelet bases in [2], the transform in [2] 
employs two M-band discrete wavelet transforms 
where the wavelet associated with the two transforms 
from Hilbert transform pairs. 
 
        It is well known to extend a 2-channel perfect 
reconstruction (PR) filter bank (FB) into an M-
channel PR FB using tree structured FB (with M = 2d). 
A tree- structured FB also allows one to extend a 2-
band DWT into an M-band DWT; M-band wavelet 
transforms of that type are often called wavelet 
packets [3].  
 

However, it is not previously known how to 
properly extend a 2- band DT-CWT (with M = rd). In 
particular, it will be shown how to obtain an FIR 4-
band DT-CWT from an FIR 2-band DT-CWT).  

 

 
 

 
This construction can be extended to other {r, 

d} values straightforwardly. 
 

This paper is organized as follows. In section II, 
implementation of the 2-Band DTCWT based on 
complex wavelets is provided. In section III, the 
necessary and sufficient condition to implement 4-
Band DTCWT is discussed. In section IV, the 
complex signal denoising methods and the proposed 
improved thresholding methods are discussed. In 
section V, experimental results are given. At last, 
section VI, gives some conclusions. 
 

II. THE 2-Band DUAL-TREE CWT 

 
         The 2-Band dual tree CWT employs two real 
DWTs as shown in Figures 1(a) and 1(b); the first 
DWT gives the real part of the transform while the 
second DWT gives the imaginary part. 
Let 0 ( )h n , 1( )h n  denote the low pass, high pass filter 
pair for the upper synthesis FB and let 0( )g n , 

1( )g n denote the low pass and high pass filter pair for 
the lower synthesis FB. 
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Fig 1(a) Analysis FB for the 2 band DT-CWT 

 

 
Fig 1(b) Synthesis FB for the 2 band DT-CWT 

 
The inverse of the dual-tree CWT is as simple as the 
forward transform. To invert the transform, the 
inverse of each of the two real DWTs are used to 
obtain two real signals. These two real signals are then 
averaged to obtain the final output. 
To overcome the DWT disadvantages the filters in one 
tree must provide delays that are half a sample 

different (at each filter’s input rate) from those in the 
opposite tree [4].   

0 0( ) ( 0.5)      ( ) { ( )}g hg n h n t t     H        (1) 
 

III. THE 4-Band DUAL-TREE CWT 

 
It is well known that 2-band wavelet bases 

employ approximation spaces 
iv which can be 

decomposed into a higher level approximation space 
1iv 
and a detail space 1iw 

 as  

                1 1i i iv v w                                 (2) 

 
Where  denotes a direct sum of the vector spaces. 
The 2- band dual complex wavelet transform asks for 
a second set of approximation spaces '

iv  and the 
associated orthogonal wavelet spaces '

iw , such that the 
wavelets ( )t and '( )t form a Hilbert transform pair. 
 
     Similarly, the M-band wavelet transform employs 
approximation spaces

iv satisfying.  

                        ' 1
1 1 1.... M

i i i iv v w w 

              (3) 
The M-band DT-CWT is constructed [5,6] by finding 
a second set of approximation spaces '

iv  and wavelet 
spaces 'k

iw  such that the  associated wavelet  
functions ( )k t and ' ( )k t from Hilbert transform 
pairs, for {1,2,....M-1}k . In the following, we will 
demonstrate how to construct an rd -band DT- CWT 
given an r-band DT-CWT. For convenience we will 
concentrate on the {r = 2, d = 2} case, yielding a 4-
band DT-CWT, but the procedure can be easily 
adapted to general {r, d} pairs. 
 
            Suppose we are given a 2-channel 
orthonormal filter bank { (2) (2)

0 1( ), ( )h n h n } and its 
associated scaling function (2) ( )t and wavelet (2) ( )t . 
Suppose we are also given a second 2- cannel filter 
bank { '  (2) ' (2)

0 1( ), ( )h n h n } and its associated scaling 
function  '  (2) ( )t  and wavelet '  (2) ( )t , where 

'  (2) ( )t  is the Hilbert transform of (2) ( )t , i.e.  
                  '  (2) (2)( )  sgn( ) ( )j                (4) 
Where ‘sgn’ denotes the signum function. That is, we 
are given a 2-band ‘dual-tree’ complex wavelet 
transform where the complex wavelet   

(2) ' (2)( ) ( )t j t   is analytical. 
 
 Now we would like to construct a 4-band 
complex wavelet transform. To that end, suppose that 
 0 1( ), ( )f n f n is another 2-channel orthonormal filter 
bank. We can then obtain a 4-channel orthonormal 
filter bank. Our aim is to construct a second wavelet 
packet transform so that the wavelets (associated with 
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the two wavelet transforms) from Hilbert transform 
pairs. 

 

SUFFICIENCY CONDITIONS FOR THE 4-BAND DT-CWT 

 
Sufficient conditions are given for two M-band 

filter banks so that the associated wavelets form 
Hilbert transform pairs. The 4-band DT-CWT 
developed here satisfies these conditions.  
 

( ) '( ) ( )kjj j

kH e e H e
  

  
Where 
 

 
 

 
0

1.5   0, / 2
( )

1.5    0, / 2

if

for

  
 

   

  
  

   
 

and 

   ( ) 0.5 0.5    0, , 1, 2, 3
k

for k          
These are exactly the sufficiency conditions 

for Hilbert transform pairs of wavelets for the 4-band 
case, provided in [6]. 
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Fig 2 (a) Analysis FB for the 4 band DT-CWT 
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Fig 2 (b) Synthesis FB for the 4 band DT-CWT 

 
Thus, the new wavelets from Hilbert pairs if we set  

'( )  ( )  {0,1}k kf n f n for k  .Consequently, the dual of 
the tree is obtained by simply replacing 

( )kh n by ' ( )kh n . This method generates a 4-band dual- 
tree complex wavelet transform. Here we are using q-
shift filters [7] of length 14 are used as 

( )kh n and ' ( )kh n , ( )kf n is set equal to ( )kh n for 
{0,1}.k  

 
IV. SIGNAL DENOISING 

 Having a sampled noisy complex signal 
1 2( , ,...., ) N

Ns s s s C   given by 
 

( ) 1,2,....,n n ns f x z n N      (5) 
 

Where the 1 2n n nz z iz  are identically and 
independently distributed standard complex Gaussian 
random variables. Their distribution 
is 1 2( , ) ' ~ Normal(0,1)n nz z . 

We use the generalized hard thresholding 
function to complex values as: 

  
,

ˆ
0,

j j

j

j

w w
w

w





 
 



               (6) 
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The generalized soft thresholding function to 

complex values is: 
 

 sgn( ) ,
ˆ

0,

j j j

j

j

w w w
w

w

 



  
 



               (7) 

Where is the threshold, ˆ 2log N   is the 
threshold. The robust estimate of the noise level ̂  on 
is given by  median 1,2,..., 2

ˆ
0.6745

nw n N


 
 ; here 

nw   

are detail coefficients at the finest level  
 

A. .The Defects of Wavelet Thresholding Methods. 

Hard and soft thresholding methods have got 
better results in de-noising, but they also have some 
defects: 

1) In the hard-thresholding case, the estimated 
wavelet coefficients ŵ are not continuous at 
position  . It may lead to oscillation of the 
reconstructed signal. 

2)  In the soft-thresholding case, when w  , 
there are constant deviations between 
ŵ and w , which reduces the amplitudes of 
the reconstructed signal. 

    B. Improved Wavelet Thresholding Denoising Method 

To overcome the defects of hard- and soft-
thresholding de-noising methods, an improved 
thresholding is defined in this paper as follows: 

( )( ),
( )

0,

j jwj

j j j j

jI

j j

w
w w

wD w

w




  




  

 




     (8) 

Where R  and β > 1, jw are the wavelet 
coefficients at level j. Because of the magnitudes of 
the wavelet coefficients are related to the Gaussian 
white noise, decrease as the scale j increases, we 
chose 

       2log / log( 1)j N j                       (9) 
Equation (8) will be equivalent to hard-

thresholding when β →∞ and will be equivalent to 
soft-thresholding when β→1. Therefore, the improved 

thresholding could be regarded as a compromising 
between the hard- and soft- thresholding. 

So the improved thresholding de-noising 
method presented in this paper could choose 
appropriate β by trial-and-error to satisfy the request 
of de-noising. 

 
V. EXPERIMENTAL RESULTS 

 

         In this paper, at first, the complex test signal is 
generated by using two real test signals with “Heavy 
sine” signal as real part and ‘’Doppler signal’’ as 
imaginary part. This complex test signal is intercepted 
to be the original test signal. The length of the 
original test signal (i.e., the number of the sample 
points) is N = 512 (See Fig. 2(a)). Complex Gaussian 
white noise is added to the original test signal at 
random. So the noisy test signal with SNR of 10 dB is 
obtained and shown in Fig. 2(b). The test signal is 
processed using two different algorithms, respectively 
(1) Complex data is processed using traditional 2 
band DT CWT and (2) Complex data processed using 
4 band DT CWT. 
      For the both DT CWT algorithm Hilbert 
transform pairs of wavelet bases with 14 coefficients 
are used (generated with parameters K=4 and L=3). 
The both DT CWT are performed with hard-
thresholding, soft-thresholding and improved 
thresholding respectively to denoise the noisy test 
signal. In the two algorithms with improved 
thresholding, the coefficient β is chosen as β =1.  
          The denoised test signals by using the universal 
threshold selection with hard and soft thresholding 
along with the improved threshold de-noising with 
three methods are shown in Fig. 2(a)-2(h).  
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Fig 2. Denoised test signals by using different de-noising methods 
 
From Fig. 2(h), it is clear that the improved 
thresholding de-noising method using 4 band DT 
CWT is giving better results. 
 

Table 1 gives the SNR of denoised signals by 
using different de-noising methods. It can be found 
that the denoised signal obtained using 4 band DT 
CWT has higher SNR than the 2 band DTCWT with 
the improved thresholding has the highest SNR among 
all methods and is more similar to the original test 
signal. 
 
 
 
 

TABLE 1 
 

SNR OF DENOISED TEST SIGNALS USING DIFFERENT DENOISING 
METHODS 

 
 

Thresholding 

 

Threshold 

selection rule 

2 band 

DT 

CWT 

4 band 

DT 

CWT 

 

Hard 

Rigrsure 22.03 23.23 

Heursure 22.21 23.28 

Sqtwolog 22.67 23.56 

Minimaxi 22.34 23.39 

 

Soft 

Rigrsure 22.10 23.40 

Heursre 22.23 23.54 

Sqtwolog 22.92 23.66 

Minimaxi 22.98 23.87 

Improved Improved 23.12 24.18 

 
 

VI. CONCLUSION 

 
We have proposed an extension of existing 

works on Hilbert transform pairs of dyadic 
orthonormal wavelets to the M-band case. The 2 band 
DT CWT with the traditional thresholding methods 
and the 4 band DT CWT with the    improved 
thresholding proposed in this paper are superior to 
other several traditional thresholding de-noising 
methods in many aspects, such as smoothness, 
remaining the geometrical characteristics of the 
original test signal. Although the coefficient β could 
be chosen flexibly, it must be chosen by trial-and-
error according to the needs of practice. So it is 
valuable to study how to find appropriate coefficient 
β rapidly and exactly. 
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